›› 2012, Vol. 18 ›› Issue (3): 9-13.DOI: 10.3969/j.issn.1006-8082.2012.03.002
Previous Articles Next Articles
Online:
2012-05-20
Published:
2012-05-20
通讯作者:
曹立勇
基金资助:
抗病转基因水稻新品种培育(2011ZX08001-002);浙江省“8812”计划(2011-01);国家自然科学基金资助项目(31071398)
CLC Number:
CHEN Yan-Li, WU Wei-Ming, CHENG Shi-Hua, CAO Li-Yong-*. Review on Rice Tolerance to Low Potassium[J]. , 2012, 18(3): 9-13.
陈艳丽, 吴伟明, 程式华, 曹立勇*. 水稻耐低钾胁迫研究进展[J]. 中国稻米, 2012, 18(3): 9-13.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zgdm.net/EN/10.3969/j.issn.1006-8082.2012.03.002
[1] Ma Z Y,Wu Y C. Contrbution of rice genetic improvement to yield increase in China[J]. Chinese J Rice Sci,2000,14(2):112-114.[2] Schroeder J I,Gierth M,Maser P. The potassium transporter Athak5 functions in K+ deprivation-induced high-affinity K+ uptake and Akt1 K+ channel contribution to K+ uptake kinetics in arabidopsis roots[J]. Plant Physiol,2005,137(3):1105-1114.[3] Ashley M K,Grant M,Grabov A. Plant responses to potassium deficiencies:A role for potassium transport proteins[J]. J Experim Botany,2006,57(2):425-436.[4] 鲁如坤. 我国土壤氮、磷、钾的基本状况[J]. 土壤学报,1989,26(3):280-286.[5] 沈中泉,郭云桃,刘良学,等. 生物钾肥的增产作用及对土壤钾平衡的影响[J]. 土壤学报,1988,25(1):31-39.[6] 刘建祥,杨肖娥,杨玉爱,等. 低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究[J]. 植物营养与肥料学报,2003,9(2):190-195.[7] 王为木,杨肖娥,李华,等. 低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响[J]. 中国水稻科学,2003,17(1):52-56.[8] 胡泓,王光火,张奇春. 田间低钾胁迫条件下水稻对钾的吸收和利用效率[J]. 中国水稻科学,2004,18(6):527-532.[9] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist,2004,162(1):9-24.[10] 郝艳淑,姜存仓,夏颖,等. 植物钾的吸收及其调控机制研究进展[J]. 中国农学通报,2011,27(1):6-10.[11] Banuelos M A,Garciadeblas B,Cubero B,et al. Inventory and functional characterization of the hak potassium transporters of rice[J]. Plant Physiol,2002,130(2):784-795.[12] Maathuis F J M,Filatov V,Herzyk P. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress[J]. Plant J,2003,35(6):675-692.[13] Ho C H,Tsay Y F. Nitrate, ammonium, and potassium sensing and signaling[J]. Current Opinion Plant Biol,2010,13(5):604-610.[14] Wu W H,Wang Y. Plant sensing and signaling in response to K(+)-deficiency[J]. Molecular Plant,2010,3(2):280-287.[15] Xu J,Li H D,Chen L Q,et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter Akt1 in arabidopsis[J]. Cell,2006,125(7):1347-1360.[16] Schachtman D P,Shin R. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J].Proceed National Acad Sci,USA,2004,101(23):8827-8832.[17] Jung J Y,Shin R,Schachtman D P. Ethylene mediates response and tolerance to potassium deprivation in arabidopsis[J]. The Plant Cell Online,2009,21(2):607-621.[18] Luan S,Li L G,Kim B G,et al. A Ca2+ signaling pathway regulates a K+ channel for low-K response in arabidopsis[J]. Proceed National Acad Sci,USA,2006,103(33):12625-12630.[19] Lee S C,Lan W Z,Kim B G,et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel[J]. Proceed National Acad Sci,USA,2007,104(40):15959-15964.[20] Hedrich R, Kudla J. Calcium signaling plant K+ uptake networks channel[J]. Cell,2006,125(7):1221-1223.[21] Maathuis F J M,Gobert A,Isayenkov S,et al. The two-pore channel Tpk1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis[J]. Proceed National Acad Sci,USA,2007,104(25):10726-10731.[22] Pandey G K,Cheong Y H,Kim B G,et al. Cipk9: A calcium sensor-interacting protein kinase required for low-potassium tolerance in arabidopsis[J]. Cell Res,2007,17(5):411-421.[23] Amtmann A, Armengaud P. The role of calcium sensor-interacting protein kinases in plant adaptation to potassium-deficiency: new answers to old questions[J]. Cell Res,2007,17(6):483-485.[24] Armengaud P,Breitling R,Amtmann A. The potassium-dependent transcriptome of arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling[J]. Plant Physiol,2004,136(1):2556-2576.[25] Cao S Q,Su L,Fang Y J. Evidence for involvement of jasmonic acid in the induction of leaf senescence by potassium deficiency in arabidopsis[J]. Canadian J Botany-Revue Canadienne De Botanique,2006,84(2):328-333.[26] Osmont K S,Sibout R,Hardtke C S. Hidden branches: developments in root system architecture[J]. Annu Rev Plant Biol,2007,58,93-113.[27] Yang X E,Jia Y B,Feng Y,et al. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency[J]. J Zhejiang University-Sci B,2008,9(5):427-434.[28] Yang X E,Liu J X,Wang W M,et al. genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.)[J]. Nutrient Cycl Agroecosys,2003,67(3):273-282.[29] Sauter M,Lorbiecke R. Adventitious root growth and cell-cycle induction in deepwater rice[J]. Plant Physiol,1999,119(1):21-29.[30] Sauter M,Steffens B,Wang J X. Interactions between ethylene,gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice[J]. Planta,2006,223(3):604-612.[31] 王树才,徐朗莱,夏凯,等. 侧根的发生及其激素调控[J]. 植物学通报,2003,20(2):129-136.[32] Nikiforova V,Freitag J,Kempa S,et al. Transcriptome analysis of sulfur depletion in arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity[J]. Plant J,2003,33(4):633-650.[33] Sharp R E,LeNoble M E. ABA,ethylene and the control of shoot and root growth under water stress[J]. J Experim Bot,2002,53(366):33-37.[34] Bennett M,Swarup R,Parry G,et al. Auxin cross-talk: integration of signalling pathways to control plant development[J]. Plant Moleculer Biol,2002,49(3-4):411-426.[35] 吴平,倪俊建. 应用分子标记研究水稻耐低钾胁迫数量性状位点[J]. 植物营养与肥料学报,1997,3(003):209-217.[36] Wu P,Ni J J,Luo A C. Qtls underlying rice tolerance to low-potassium stress in rice seedlings[J]. Crop Sci,1998,38(6):1458-1462.[37] Flowers T J,Koyama M L,Levesley A,et al. Quantitative trait loci for component physiological traits determining salt tolerance in rice[J]. Plant Physiol,2001,125(1):406-422.[38] Lin H X,Zhu M Z,Yano M,et al. Qtls for Na(+) and K(+) uptake of the shoots and roots controlling rice salt tolerance[J]. Theor Appl Genet,2004,108(2):253-260.[39] Ren Z H,Gao J P,Li LG,et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genet,2005,37(10):1141-1146.[40] Ikehashi H,Shimizu A,Guerta C Q,et al. Qtls for nutritional contents of rice seedlings (Oryza sativa L.) in solution cultures and its implication to tolerance to iron-toxicity[J]. Plant Soil,2005,275(1-2):57-66.[41] Awadhesh P,Vandna R,Subhashis B,et al. Combining Qtl mapping and transcriptome profiling of bulked rils for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.)[J]. Molecul Genet Genom,2010,284(2):121-136. |
[1] | QIAN Yin-Fei-1, CHEN Xian-Mao-1, XU Ya-Qun-2, KUANG Zong-Xia-2, XIE Heng-Wang-2, LIU Fang-Ping-2, WANG Shao-Hua-2, CAI Shuo-2, PENG Chun-Rui-1*. Effects of Optimal Fertilization Practice on Yield Formation and Nitrogen Utilization of Double-cropping Rice [J]. , 2015, 21(4): 83-87. |
[2] | LI Gui-Yong-1, GAO Sen-2, LUAN Ya-Hong-3, ZI Yue-E-2, CHANG Xiao-Xiang-3, YANG Cui-Ling-4, HE Xing-Lin-5, XIANG Han-Zhang-6, HUANG Jun-7, XIA Qiong-Mei-1, LONG Rui-Ping-1, ZHU Hai-Ping-1, YANG Cong-Dang-1*. Effects of Different Controlled-release Fertilizer Amount on Dry Matter Production and Grain Yield of Rice [J]. , 2015, 21(4): 88-90. |
[3] | SUN Hui-Feng-1 2, ZHOU Sheng-1 2*, FU Zi-Shi-1 2, CHEN Gui-Fa-1 2, ZOU Guo-Yan-1 2, SONG Xiang-Fu-1 2. Effects of Application of Controlled-release Fertilizer Combined with Wheat Straw on Rice Yield and Nitrogen Use Efficiency [J]. , 2015, 21(4): 95-98. |
[4] | HUANG Zhi-Yuan-1, 吕Qi-Ming-1 , CHEN Qing-Zhong-2, XIN Ye-Yun-1, FU Xi-Qin-1, YUAN Long-Ping-1. Quality and Agronomic Characteristics of High Quality Rice Varieties in Hunan Province [J]. , 2015, 21(4): 108-113. |
[5] | YU Pao-Lan-1, XIAO Xiao-Jun-1, CHEN Yan-1, LI Ya-Zhen-1, YANG Lin-2, LEI Yuan-Yuan-1, LIU Kai-Lou-1*. Effects of Silicon Fertilizer on Population Production and Cadmium Absorption for Early Rice [J]. , 2015, 21(4): 135-137. |
[6] | XIE Xiao-Bing-1, JIANG Peng-1, 2 3, HUANG Min-1*, CAO Fang-Bo-1, ZHOU Xue-Feng-1, ZHANG Rui-Chun-1, CHEN Jia-Na-1, WU Dan-Dan-1, ZOU Ying-Bin-1. Effects of Nitrogen Rate on Grain Yield and Dry Matter for Double Cropping Super Rice in South China [J]. , 2015, 21(4): 163-169. |
[7] | BA Guo-Lin-1, FU Li-Dong-2*. Effect of Nitrogen Fertilizer Postpone on Rice Yield in Coastal Saline Soil [J]. , 2015, 21(4): 169-171. |
[8] | SUN Jia-Wei, YANG Zhi-Yuan, LI Ying-Hong, DAI Zou, ZHAO Jian-Hong, LI Na, XIE Hua-Ying, SUN Yong-Jian, MA Jun-*. Effects of Combined Application of Nitrogen and Potassium at Different Growth Stage on Yield Formation of Hybrid Rice F you 498 [J]. , 2015, 21(4): 184-190. |
[9] | WANG Shi-Qiang-1, CHEN Shu-Jie-2, ZHAO Hai-Hong-3, GU Chun-Mei-1, ZHAO Li-Ming-1, WANG Li-Ping-1, WANG He-1, NA Yong-Guang-1*. Effects of Nitrogen Management on Growth and Grain Yield of Rice in Cold Area [J]. , 2015, 21(3): 68-71. |
[10] | WANG Xiang-Ping-1, FENG He-Ping-2, HUANG Yi-De-3*. Effects of Topdressing N and K Fertilizer in Different Periods on Lodging Resistance of Mid-season Indica Hybrid Rice [J]. , 2015, 21(2): 13-16,19. |
[11] | CHEN Yang-1, CHEN Hui-Zhe-1, ZENG Yan-Hua-1, 2 , ZHU De-Feng-1*. Effects of Different Nitrogen Application on Seedling Quality and Grain Yield of Machine Transplanted Double-season Early Rice [J]. , 2015, 21(1): 56-59. |
[12] | WANG Cui-Ling, WEI Zhong-Hua, LIU Qing, CHEN Qi, XU Kun, LIANG Shuang, JI Jing-Jun. Effects of Different Nitrogen Treatments on Yield and Quality of Different Types Japonica Rice [J]. , 2015, 21(1): 72-75. |
[13] | ZHOU Fu-Yu, DING Hua-Ping, CHEN Bin, QIAN Jun, ZHOU Hao. Study on the Critical Value of Zinc and Effects of Zinc Fertilizer on Rice in Calcareous Soil [J]. , 2014, 20(6): 21-23. |
[14] | XU Yi-Cheng, ZHU De-Feng, CHEN Hui-Zhe-*. Effects of Nitrogen Application on Grain Yield and Nitrogen Utilization of No-tillage Machine Transplanted Rice [J]. , 2014, 20(6): 30-34. |
[15] | WU Jia-Qiang-1, ZHENG Xiao-Hong-2, ZHAO Xiao-Mei-1, LI Zhi-Yi-1, HUANG Yun-Qiang-2. Study on the Effects of Fertilizer Reduction with Efficiency Increase by Appling Strongreen on Rice [J]. , 2014, 20(6): 46-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||